Cyclodextrin-assisted synthesis of tailored mesoporous silica nanoparticles

نویسندگان

  • Fuat Topuz
  • Tamer Uyar
چکیده

Mesoporous silica nanoparticles (MSNs) have sparked considerable interest in drug/gene delivery, catalysis, adsorption, separation, sensing, antireflection coatings and bioimaging because of their tunable structural properties. The shape, size and pore structure of MSNs are greatly influenced by the type of additives used, e.g., solvent and pore-templating agent. Here, we studied the influence of cyclodextrin (CD) molecules on the formation of MSNs. The nanoparticles over 100 nm in diameter were synthesized by surfactant-templated, hydrolysis-polycondensation reactions in the presence of pristine CD (β-CD) or hydroxypropyl-functionalized CDs (HP-γ-CD and HP-β-CD). Depending on the formulation conditions, differently shaped MSNs, such as bean-like, spherical, ellipsoid, aggregate and faceted were generated. The morphology and size of MSNs varied with the CD-type used. Generally, spherical particles were obtained with β-CD, while a faceted morphology was observed for the particles synthesized using HP-CDs. The particle size could be tuned by adjusting the amount of CD used; increasing the CD concentration led to larger particles. MSNs synthesized in the presence of β-CD displayed a smaller particle size than those produced with HP-functional CDs. FTIR, TGA and solid-state 13C NMR demonstrated the adsorption of CDs on the particle surfaces. The proposed concept allows for the synthesis of silica nanoparticles with control over particle shape and size by adjusting the concentration of additives in a simple, one-pot reaction system for a wide range of applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Folic acid-modified mesoporous silica nanoparticles for cellular and nuclear targeted drug delivery.

Site-specific stimuli responsive nanomaterials are an important breakthrough for the improvement of modern therapies in nanomedicine. Mesoporous silica nanoparticles are good candidate for the development of targeted delivery system as their surface can be easily modified with functional groups in order to achieve controlled and specific release. We designed a drug delivery system based on meso...

متن کامل

Light-triggered reversible assemblies of azobenzene-containing amphiphilic copolymer with β-cyclodextrin-modified hollow mesoporous silica nanoparticles for controlled drug release.

Hollow mesoporous silica nanoparticles (HMSs) were modified by β-cyclodextrin via a "click" reaction, an amphiphilic copolymer with a trans-azobenzene structure was then assembled onto β-cyclodextrin to cover the surface of the HMSs. The prepared nanocomposites can release drugs in a "release-stop-release" manner by converting light irradiation.

متن کامل

Synthesis of Mesoporous Silica and Modified as a Drug Delivery System of Ibuprofen

In this work we synthesized of mesoporous silica nanoparticles and functionalized with 3-aminopropyltriethoxysilane to improve the loading and release of ibuprofen bonded to 3-aminopropyltriethoxysilane. sample were characterized by Fourier transform infrared spectroscopy, Scanning electron microscopy , X-ray diffraction, and ultraviolet-visible. the Fourier transform infrared spectroscopy resu...

متن کامل

A reversible light-operated nanovalve on mesoporous silica nanoparticles.

Two azobenzene α-cyclodextrin based nanovalves are designed, synthesized and assembled on mesoporous silica nanoparticles. Under aqueous conditions, the cyclodextrin cap is tightly bound to the azobenzene moiety and capable of holding back loaded cargo molecules. Upon irradiation with a near-UV light laser, trans to cis-photoisomerization of azobenzene initiates a dethreading process, which cau...

متن کامل

An inorganic capping strategy for the seeded growth of versatile bimetallic nanostructures.

Metal nanostructures have attracted great attention in various fields due to their tunable properties through precisely tailored sizes, compositions and structures. Using mesoporous silica (mSiO2) as the inorganic capping agent and encapsulated Pt nanoparticles as the seeds, we developed a robust seeded growth method to prepare uniform bimetallic nanoparticles encapsulated in mesoporous silica ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018